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Abstract

A low-dimensional model based on the method of proper orthogonal decomposition (POD) and the method of pol-

yargumental systems (MPS) for thermal conductivity problems with strongly localized source of heat has been pre-

sented. The key aspect of these methods is that they enable to avoid weak point of other projection methods, which

consists in a priori choice of basis functions. It enables us to use the MPS method and the POD method as convenient

means to construct low-dimensional models of heat and mass transfer problems.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In spite of the imposing progress in computer engi-

neering, the direct numerical simulation based on finite

element methods or finite difference methods, is unable

to ensure to the full extent the analyses of all aspects

of behavior of the simulated phenomenon. It is more

convenient (in point of fact, it is the only possibility)

to carry out the analyses of model instability, finding

bifurcation points, analyses of control parameters im-

pact etc. resting upon low-dimensional (low-parameter)

model. In fact, the basic classical results of hydrodynam-

ics and heat transfer have been obtained on the basis of

application of integral and projection methods to ele-

mentary power approximation of thermalphysic fields

being studied.

One of the ways to effectively construct a low-dimen-

sional model is the use of projection methods. When

using a projection approach the study of a physical phe-
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nomenon comes to construction of the dynamic or alge-

braic model obtained while projecting solution on a

priori selected basis. ‘‘Practical analyticity’’ of the solu-

tion obtained in this case enables us to perform the anal-

ysis of the model in explicit form. Inverse problems and

control problems, which are important in applied sense,

are also more easily analyzed within low-dimensional

models.

While using projection methods (Galerkin, Kanto-

rovich et al.) one of the principal points that at the bot-

tom determine the ‘‘quality’’ of obtained approximate

solution is the selection of a projection basis. The selec-

tion of a basis virtually designates not only the necessary

number of terms in approximation representation but

also the computational process stability. It is known that

the choice of spline functions, as basis functions in the

finite element method, made it possible to overcome

an ill-conditioned problem for Ritza method [1]. For

conjugate operators the following can be stated: the

more ‘‘energy affinity’’ have the approximated operator

and the operator whose eigenfunctions are basis func-

tions the more effective is a projection method [2].
ed.

mailto:dmirty_blinov@yahoo.ca 


Nomenclature

a,R,F basis functions

Bi Bio number, a Æ rH/k
f function for approximation

Mi eigenvalue

P dimensionless productivity of source of

heat, qv/qvmax
qv heat productivity of source of heat

qvmax maximum heat productivity of source of

heat

r radial coordinate

rH outer radius

rB inner radius

t temperature

T dimensionless temperature, kt=ðqvmaxr2H Þ
~x;~s vectors of coordinates

Greek symbols

a heat transfer coefficient

u angular coordinate

u* dimensionless angular coordinate, u* = u/p
g integral error

k thermal-conductivity coefficient

q dimensionless radial coordinate, r/rH
qB dimensionless inner coordinate, rB/rH
q* redundant dimensionless radial coordinate,

q* = (q�qB)/(1�qB)

s time

w basis functions

Subscripts

i, j, k mode numbers

N number of modes

Superscripts
00

second derivation
0 first derivation

5824 D.G. Blinov et al. / International Journal of Heat and Mass Transfer 47 (2004) 5823–5828
2. Method

The effective approach to construction of basis func-

tions for approximation problem is a procedure pro-

posed by Lumley [3] and denominated as the method

of proper orthogonal decomposition (POD) or Karh-

unen–Loeve procedure. Originally, this approach was

proposed as an attempt to show up coherent structures

in a studied physical field. Eventually, Karhunen–Loeve

procedure consists in finding of spatial basis by means of

determination of eigenfunctions of a certain integral

equation. This integral equation (governing equation

of the method) is constructed by the approximation of

correlation function determined with respect to approx-

imated field. The obtained basis (empirical basis—

according to POD method terminology) is orthogonal,

and temporal coefficients computed on its basis are

uncorrelated in time. This allows one to discuss the

terms of such approximation as noninteracting on aver-

age modes, but this does not imply that the modes do

not participate in short time interaction.

The application of Karhunen–Loeve procedure to

the results of numerical simulations of hydrodynamics

problems, including turbulence, proved its efficiency

[4–8]. The number of terms (number of model�s param-
eters) in approximation representation diminished by an

order.

Virtually, POD method in the proper sense is not a

simulation method for the processes described by differ-

ential equations. Nevertheless, it can be treated as the

first step in construction of a mathematical model within
one or another projection procedure based on empiric

basis functions. By approximation of the results of direct

numerical simulation of a studied process with POD

method at any single set of control parameters it is pos-

sible, by means of obtained empiric basis and on the

base of Galerkin method, to construct a dynamic model

of the process [9–13].

The issue of basis functions selection is principal in

projection method also known as the method of the pol-

yargumental systems (MPS) [14–16]. At the heart of this

method there underlies the idea of substantial develop-

ment of Kantorovich method on the basis of a principle

consisting the in completeness of functional reflection of

all available information on the studied object. Owing to

this fact the use of MPS method eliminates typical of

other projection methods element of a priori choice of

basis functions.

For the approximation problem MPS approach con-

sists in the expansion of approximated field with respect

to basis that is determined proceeding from the specific-

ity of the field itself.

Suppose the field of a certain physical variable—

f ðs;~xÞ. On having chosen a standard form of

representation:

f ¼
XN
n¼1

aiðsÞwið~xÞ; ð1Þ

where {ai(s)} and fwið~xÞg—beforehand unknown sys-

tems of functions, and equated having corresponding

weights integrals of both members of (1) we obtain the

following integral expressions:
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Z
f � ajds ¼

X
i

wið~xÞ �
Z

aiajds; j ¼ 1 . . .N ð2aÞ

Z
f � wkd~x ¼

X
i

aiðsÞ �
Z

wiwkd~x; k ¼ 1 . . .N ð2bÞ

It is evident that the relation (2) corresponds to the con-

ditions of the best mean-square approximation at form

of representation (1). Sequential iteration between the

members of systems (2a) and (2b) enables to find the de-

sired approximation.

Now we are modifying the obtained relations. Let us

take advantage of the fact that for two-variable func-

tion, any bilinear N-form of type (1) can be changed

to equivalent form via linear substitute of the function

of each argument, but now on the basis of two orthog-

onal function systems. Having presumed that in form

(1) {ai(s)} and fwið~xÞg are orthogonal function systems,

we obtain the following system:

aiðsÞ
Z

wi � widx ¼
Z

f � wið~xÞd~x; i ¼ 1 . . .N ð3aÞ

wkð~xÞ
Z

ak � akds ¼
Z

f � wkð~xÞdx; k ¼ 1 . . .N ð3bÞ

Here, unlike system (2), each term in the form of repre-

sentation (1) is found separately.

Let us revert to the POD method. The governing

integral equation of this method can be written as

follows:

Mi � wið~xÞ ¼
ZZ

ðf ðs;~xÞf ðs;~sÞÞds � wið~sÞd~s ð4Þ

If we substitute relation (3a) in (3b), as a result we will

obtain an integral equation:

Mi � wið~xÞ ¼
ZZ

ðf ðs;~xÞf ðs;~sÞÞds � wið~sÞd~s ð5Þ

Mi ¼
Z

aiaids �
Z

wiwid~x ð6Þ

which, except for a single principal feature, is similar to

the POD method integral equation. In the MPS method

taking into account of conjunction (6) occurs in iteration

process within system (3), therefore the value of Mi be-

comes a result of co-ordination of spatio-temporal

behavior. For the POD method the value Mi is found

as an eigenvalue of integral equation and is purely math-

ematical compatibility condition of the integral equation

(4). This determines more transparency in implementa-

tion of the MPS method.

One can suggest further generalization of the MPS

approach to approximation problems. As a criterion of

the approximation representation optimality (that in

this case study was a mean-square criterion) one can

consider the criteria based on mean-square deviation
of derivation or combined criteria including value of

approximated field at boundaries, integral characteris-

tics computed on the basis of approximated field etc.

For the POD method a said generalization will consist

in the modification of correlation function being a kernel

of integral equation (4).

The MPS method, in respect of its initial statement,

is a method of process simulation governed by differen-

tial equations. It is of interest to consider the simulation

of a specific problem based on method of the polyargu-

ment systems, both from the point of view of approxi-

mation capability and from the point of view of the

construction of low-dimensional (low-parameter) proc-

ess model.
3. Results and conclusions

Let us consider a boundary problem of thermal con-

ductivity for annular domain (qB 6 q 6 1,0 6 u 6 p)
described by Poisson�s equation:

AT ðq;uÞ ¼ 1

q
o

oq
q
oT
oq

� �
þ 1

q2

o2T
ou2

¼ �P ðq;uÞ; ð7Þ

at the following boundary conditions:

oT
oq

¼ 0 at q ¼ qB;

oT
oq

þ BiT ¼ 0 at q ¼ 1;

oT
ou

¼ 0 at u ¼ 0; u ¼ p

ð8Þ

As a source of heat we consider

Pðq;uÞ ¼ fsinpq
 � sin pðu
 � 1=8Þg120; ð9aÞ

q
 ¼ ðq � qBÞ=ð1� qBÞ; u
 ¼ u=p ð9bÞ

describing localized heat supply.

Having solved the stated problem by Fourier

method, we obtain desired temperature field. The

approximation of this field by expansion in Fourier ser-

ies needs roughly several hundreds of terms to ensure an

error of the order of a few per cent. At the same time the

approximation built upon the basis of MPS method (or

Karhunen–Loeve procedure) ensures such accuracy of

the solution with four terms. It indicates the possibility

to ‘‘catch’’ the process under study in low-parameter

(low-term) form of representation. Let us notice that

here in contrast to the first part of the paper we are con-

sidering the approximation with respect to two spatial

coordinates.

Relying on the fact of adequacy of a few terms of the

two-component form of representation to describe the

problem:



(a)

(b)

Fig. 1. (a) The temperature distribution TN(q
*,u*) at

u* = 0.625; q*, u*- formula (9b). (b) The temperature distribu-

tion TN(q
*,u*) at q* = 0.5; q*, u* - formula (9b).
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TN ðq;uÞ ¼
XN
i

RiðqÞ � F iðuÞ ð10Þ

We apply MPS method procedure, now directly, to the

differential equation (7) and (8). According to the prin-

ciple of minimum apriority in the form of solution rep-

resentation, both the systems of basis function {Ri} are

regarded and {Fi} is unknown (that distinguishes this

method from standard projection method). Further,

conforming to the principle of functional reflection com-

pleteness of available information we project residual

(after substitution of form (10) in (7) and (8)) on both

the systems of basic functions.

Let us write the system of MPS method in opera-

tional notation:Z p

0

A
XN
i

RiðqÞF iðuÞ � P ðq;uÞ
 !

� F kðuÞdu ¼ 0

k ¼ 1 . . .N ð11aÞ

Z 1

qB

A
XN
i

RiðqÞF iðuÞ � P ðq;uÞ
 !

q � RjðqÞdq ¼ 0

j ¼ 1 . . .N ð11bÞ

In the same way as for system (2) we use iteration

method to solve system (11). Unlike approximation sys-

tem of the MPS method (2), system (11) cannot be re-

duced to the form solved with regard to each term in

(10).

System (11) for discussed specific thermal con-

ductivity problem in annular domain has the following

form:

XN
i

R00
i ðqÞ þ

1

q
R0
iðqÞ

� �
I1ik þ

1

q2
RiðqÞI2ik

	 

¼ �I3kðqÞ;

k ¼ 1 . . .N

R0
kðqBÞ ¼ 0; R0

kð1Þ þ Bi � Rkð1Þ ¼ 0;

XN

i
½F 0

iðuÞJ 1ij þ ðJ 2ij þ J 3ijÞ � F iðuÞ� ¼ �J 4jðuÞ;
j ¼ 1 . . .N

F 0
jð0Þ ¼ F 0

jðpÞ ¼ 0:

Here I1ik, I2ik, J1ij, J2ij, J3ij and I3k(q), J4j(u)-reduced
coefficients and right-hand members of one-dimensional

equations:

I1ik ¼
Z p

0

F iðuÞF kðuÞdu;

J 1ij ¼
Z 1

qB

1

q
RiðqÞRjðqÞdq;

I2ik ¼
Z p

0

F 00
i ðuÞF kðuÞdu;
J 2ij ¼
Z 1

qB

R0
iðqÞRjðqÞqdq;

I3kðqÞ ¼
Z p

0

P ðq;uÞF kðuÞdu;

J 3ij ¼
Z 1

qB

R00
i ðqÞRjðqÞqdq;

J 4jðuÞ ¼
Z 1

qB

P ðq;uÞRjðqÞqdq

The problem was solved at qB = 0.4, Bi=10 and a heat

source having the form (9a).



Fig. 2. The distribution PN(q
*,u*) = ATN at u* = 0.625; q*,u* -formula (9b).

Fig. 3. The error g (formula (12)) versus the number of terms

N.
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In Fig. 1a and b there is shown a temperature distri-

bution in the two sections of annular domain which pass

through the point of maximal heat-source power. In Fig.

2 there is shown a plot of function PN(q,u) = ATN(q,u)
for various number of terms in solution.

Function TN(q,u) found by MPS method ensures vir-

tually exact solution with respect to T at N = 3, and for

function PN (q,u) the coincidence with a given P(q,u)
(formula (9a)) takes place already at N = 5. In Fig. 3

there is shown a dependence of integral error for the

MPS method and Fourier method. In this figure the

integral error are determined by the formula:

g ¼
Z p

0

Z 1

qB

j Pðq;uÞ � ATN ðq;uÞ jj T N j �q � dq � du=x;

x ¼
Z p

0

Z 1

qB

j P jj TN j �q � dq � du ð12Þ

In order to ensure error g at a level of 5–6% in expansion

method with respect to two-dimensional eigenfunctions

and in Fourier method (Galerkin method), 480 and 22

terms of a series are needed, but in MPS method one

needs only 5 terms.

Shown results demonstrate that the analyzed thermal

conductivity problem with strongly localized source of

heat may be considered on the basis of a low-dimen-

sional model described by the system of ordinary differ-

ential equations.

The selection of basis functions not a priori, but

based on the features of the problem itself, aspiration
for complete reflection of all the available informa-

tion—these are principles underlying the MPS

method and POD method. It enables the MPS method

and the POD method, which is inherently related with

the latter, serve as convenient means to construct

low-dimensional models of heat and mass transfer

problems.
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